Restricted Sine Function.

The trigonometric function $\sin x$ is not one-to-one functions, hence in order to create an inverse, we must restrict its domain.

The restricted sine function is given by

$$f(x) = \begin{cases} \sin x & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \text{undefined} & \text{otherwise} \end{cases}$$

We have $\mathsf{Domain}(\mathsf{f}) = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\mathsf{Range}(\mathsf{f}) = [-1, 1].$

Inverse Sine Function (arcsin $x = sin^{-1}x$).

We see from the graph of the restricted sine function (or from its derivative) that the function is one-to-one and hence has an inverse, shown in red in the diagram below.

This inverse function, $f^{-1}(x)$, is denoted by $f^{-1}(x) = \sin^{-1} x$ or $\arcsin x$.

Properties of $\sin^{-1} x$.

$$\mathsf{Domain}(\mathsf{sin}^{-1}) = [-1,1] \text{ and } \mathsf{Range}(\mathsf{sin}^{-1}) = [-\tfrac{\pi}{2},\tfrac{\pi}{2}].$$

Since $f^{-1}(x) = y$ if and only if f(y) = x, we have:

$$\sin^{-1} x = y$$
 if and only if $\sin(y) = x$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Since
$$f(f^{-1})(x) = x$$
 $f^{-1}(f(x)) = x$ we have:

$$\sin(\sin^{-1}(x)) = x \text{ for } x \in [-1,1] \quad \sin^{-1}(\sin(x)) = x \text{ for } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

from the graph: $\sin^{-1} x$ is an odd function and $\sin^{-1} (-x) = -\sin^{-1} x$.

Evaluating $\sin^{-1} x$.

Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{-\pi}{4}\right)$ is on the graph of $y = \sin^{-1} x$.
- ► Therefore $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \frac{-\pi}{4}$.

Example Evaluate $\sin^{-1}(\sqrt{3}/2)$ and $\sin^{-1}(-\sqrt{3}/2)$.

- ▶ $\sin^{-1}(\sqrt{3}/2) = y$ is the same statement as: y is an angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\sin y = \sqrt{3}/2$.
- Consulting our unit circle, we see that $y = \frac{\pi}{3}$.

$$ightharpoonup \sin^{-1}(-\sqrt{3}/2) = -\sin^{-1}(\sqrt{3}/2) = -\frac{\pi}{2}$$

More Examples For $\sin^{-1} x$

Example Evaluate $\sin^{-1}(\sin \pi)$.

• We have $\sin \pi = 0$, hence $\sin^{-1}(\sin \pi) = \sin^{-1}(0) = 0$.

Example Evaluate $\cos(\sin^{-1}(\sqrt{3}/2))$.

- We saw above that $\sin^{-1}(\sqrt{3}/2) = \frac{\pi}{3}$.
- Therefore $\cos(\sin^{-1}(\sqrt{3}/2)) = \cos\left(\frac{\pi}{3}\right) = 1/2$.

Preparation for the method of Trigonometric Substitution

Example Give a formula in terms of x for $tan(sin^{-1}(x))$

• We draw a right angled triangle with $\theta = \sin^{-1} x$.

From this we see that $tan(sin^{-1}(x)) = tan(\theta) = \frac{x}{\sqrt{1-x^2}}$.

Derivative of $\sin^{-1} x$.

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}, \quad -1 \le x \le 1.$$

Please read through the proof given in your notes using implicit differentiation. We can also derive a formula for $\frac{d}{dx}\sin^{-1}(k(x))$ using the chain rule, or we can apply the above formula along with the chain rule directly.

ExampleFind the derivative

$$\frac{d}{dx}\sin^{-1}\sqrt{\cos x}$$

• We have
$$\frac{d}{dx} \sin^{-1} \sqrt{\cos x} = \frac{1}{\sqrt{1 - (\sqrt{\cos x})^2}} \frac{d}{dx} \sqrt{\cos x}$$

$$=\frac{1}{\sqrt{1-\cos x}}\cdot\frac{-\sin x}{2\sqrt{\cos x}}=\frac{-\sin x}{2\sqrt{\cos x}\sqrt{1-\cos x}}$$

Inverse Cosine Function

Inverse Cosine Function We can define the function $\cos^{-1} x = \arccos(x)$ similarly. The details are given at the end of your lecture notes.

$$\mathsf{Domain}(\mathsf{cos}^{-1}) = [-1,1] \quad \mathsf{and} \quad \mathsf{Range}(\mathsf{cos}^{-1}) = [0,\pi].$$

$$\cos^{-1} x = y$$
 if and only if $\cos(y) = x$ and $0 \le y \le \pi$.

$$\cos(\cos^{-1}(x)) = x \text{ for } x \in [-1, 1] \quad \cos^{-1}(\cos(x)) = x \text{ for } x \in [0, \pi].$$

It is shown at the end of the lecture notes that

$$\frac{d}{dx}\cos^{-1}x = -\frac{d}{dx}\sin^{-1}x = \frac{-1}{\sqrt{1-x^2}}$$

and one can use this to prove that

$$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}.$$

Restricted Tangent Function

The tangent function is not a one to one function.

The restricted tangent function is given by

$$h(x) = \begin{cases} & \tan x & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ & \text{undefined} & \text{otherwise} \end{cases}$$

We see from the graph of the restricted tangent function (or from its derivative) that the function is one-to-one and hence has an inverse, which we denote by

$$h^{-1}(x) = \tan^{-1} x \text{ or } \arctan x.$$

Graphs of Restricted Tangent and $tan^{-1}x$.

Properties of $tan^{-1}x$.

$$\mathsf{Domain}(\mathsf{tan}^{-1}) = (-\infty, \infty) \text{ and } \mathsf{Range}(\mathsf{tan}^{-1}) = (-\tfrac{\pi}{2}, \tfrac{\pi}{2}).$$

Since $h^{-1}(x) = y$ if and only if h(y) = x, we have:

$$\tan^{-1} x = y$$
 if and only if $\tan(y) = x$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Since
$$h(h^{-1}(x)) = x$$
 and $h^{-1}(h(x)) = x$, we have:

$$\tan(\tan^{-1}(x))=x \text{ for } x\in(-\infty,\infty) \quad \tan^{-1}(\tan(x))=x \text{ for } x\in\Big(-\frac{\pi}{2},\frac{\pi}{2}\Big).$$

From the graph, we have: $\tan^{-1}(-x) = -\tan^{-1}(x)$.

$$\tan^{-1}(-x) = -\tan^{-1}(x).$$

Also, since

$$\lim_{x \to (\frac{\pi}{2}^-)} \tan x = \infty \quad \text{and} \quad$$

$$\lim_{x\to (-\frac{\pi}{2}^+)}\tan x=-\infty,$$

we have
$$\left| \lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2} \right|$$
 and $\left| \lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2} \right|$

$$\lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}$$

Evaluating $tan^{-1}x$

Example Find $tan^{-1}(1)$ and $tan^{-1}(\frac{1}{\sqrt{3}})$.

- ▶ $\tan^{-1}(1)$ is the unique angle, θ , between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = 1$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{4}$.
- ▶ $\tan^{-1}(\frac{1}{\sqrt{3}})$ is the unique angle, θ , between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{3}}$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{6}$.

Example Find $cos(tan^{-1}(\sqrt{3}))$.

• $\cos(\tan^{-1}(\sqrt{3})) = \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$.

Derivative of $tan^{-1} x$.

Using implicit differentiation, we get

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}, \quad -\infty < x < \infty.$$

(Please read through the proof in your notes.) We can use the chain rule in conjunction with the above derivative.

Example Find the domain and derivative of $tan^{-1}(ln x)$

- ▶ Domain = Domain of $\ln x = (0, \infty)$
- •

$$\frac{d}{dx}\tan^{-1}(\ln x) = \frac{\frac{1}{x}}{1 + (\ln x)^2} = \frac{1}{x(1 + (\ln x)^2)}.$$

Integration Formulas

Reversing the derivative formulas above, we get

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C, \quad \int \frac{1}{x^2+1} dx = \tan^{-1} x + C,$$

Example

$$\int_0^{1/2} \frac{1}{1 + 4x^2} \ dx$$

We use substitution. Let u = 2x, then du = 2dx, u(0) = 0, u(1/2) = 1.

$$\int_0^{1/2} \frac{1}{1+4x^2} dx = \frac{1}{2} \int_0^1 \frac{1}{1+u^2} du = \frac{1}{2} \tan^{-1} u \Big|_0^1 = \frac{1}{2} [\tan^{-1}(1) - \tan^{-1}(0)]$$

$$\frac{1}{2}[\frac{\pi}{4} - 0] = \frac{\pi}{8}.$$

Integration

Example

$$\int \frac{1}{\sqrt{9-x^2}} \ dx$$

$$\int \frac{1}{\sqrt{9-x^2}} \ dx = \int \frac{1}{3\sqrt{1-\frac{x^2}{9}}} \ dx = \frac{1}{3} \int \frac{1}{\sqrt{1-\frac{x^2}{9}}} dx$$

Let $u = \frac{x}{3}$, then dx = 3du

•

$$\int \frac{1}{\sqrt{9-x^2}} dx = \frac{1}{3} \int \frac{3}{\sqrt{1-u^2}} du = \sin^{-1} u + C = \sin^{-1} \frac{x}{3} + C$$