Restricted Sine Function.

The trigonometric function $\sin x$ is not one-to-one functions, hence in order to create an inverse, we must restrict its domain.
The restricted sine function is given by

$$
f(x)=\left\{\begin{array}{cc}
\sin x & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
\text { undefined } & \text { otherwise }
\end{array}\right.
$$

We have Domain $(\mathrm{f})=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and Range $(\mathrm{f})=[-1,1]$.

Inverse Sine Function $\left(\arcsin x=\sin ^{-1} x\right)$.

We see from the graph of the restricted sine function (or from its derivative) that the function is one-to-one and hence has an inverse, shown in red in the diagram below.

This inverse function, $f^{-1}(x)$, is denoted by $f^{-1}(x)=\sin ^{-1} x$ or $\arcsin x$.

Properties of $\sin ^{-1} x$.

Domain $\left(\sin ^{-1}\right)=[-1,1]$ and Range $\left(\sin ^{-1}\right)=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Since $f^{-1}(x)=y$ if and only if $f(y)=x$, we have:

$$
\sin ^{-1} x=y \text { if and only if } \sin (y)=x \text { and }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} .
$$

Since $f\left(f^{-1}\right)(x)=x \quad f^{-1}(f(x))=x$ we have:
$\sin \left(\sin ^{-1}(x)\right)=x$ for $x \in[-1,1] \quad \sin ^{-1}(\sin (x))=x$ for $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
from the graph: $\sin ^{-1} x$ is an odd function and $\sin ^{-1}(-x)=-\sin ^{-1} x$.

Evaluating $\sin ^{-1} x$.

Example Evaluate $\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{-\pi}{4}\right)$ is on the graph of $y=\sin ^{-1} x$.
- Therefore $\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)=\frac{-\pi}{4}$.

Example Evaluate $\sin ^{-1}(\sqrt{3} / 2)$ and $\sin ^{-1}(-\sqrt{3} / 2)$.

- $\sin ^{-1}(\sqrt{3} / 2)=y$ is the same statement as:
y is an angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\sin y=\sqrt{3} / 2$.
- Consulting our unit circle, we see that $y=\frac{\pi}{3}$.

- $\sin ^{-1}(-\sqrt{3} / 2)=-\sin ^{-1}(\sqrt{3} / 2)=-\frac{\pi}{3}$

More Examples For $\sin ^{-1} x$

Example Evaluate $\sin ^{-1}(\sin \pi)$.

- We have $\sin \pi=0$, hence $\sin ^{-1}(\sin \pi)=\sin ^{-1}(0)=0$.

Example Evaluate $\cos \left(\sin ^{-1}(\sqrt{3} / 2)\right)$.

- We saw above that $\sin ^{-1}(\sqrt{3} / 2)=\frac{\pi}{3}$.
- Therefore $\cos \left(\sin ^{-1}(\sqrt{3} / 2)\right)=\cos \left(\frac{\pi}{3}\right)=1 / 2$.

Preparation for the method of Trigonometric Substitution

Example Give a formula in terms of x for $\tan \left(\sin ^{-1}(x)\right)$

- We draw a right angled triangle with $\theta=\sin ^{-1} x$.

- From this we see that $\tan \left(\sin ^{-1}(x)\right)=\tan (\theta)=\frac{x}{\sqrt{1-x^{2}}}$.

Derivative of $\sin ^{-1} x$.

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}, \quad-1 \leq x \leq 1
$$

Please read through the proof given in your notes using implicit differentiation. We can also derive a formula for $\frac{d}{d x} \sin ^{-1}(k(x))$ using the chain rule, or we can apply the above formula along with the chain rule directly.
ExampleFind the derivative

$$
\frac{d}{d x} \sin ^{-1} \sqrt{\cos x}
$$

- We have $\frac{d}{d x} \sin ^{-1} \sqrt{\cos x}=\frac{1}{\sqrt{1-(\sqrt{\cos x})^{2}}} \frac{d}{d x} \sqrt{\cos x}$

$$
=\frac{1}{\sqrt{1-\cos x}} \cdot \frac{-\sin x}{2 \sqrt{\cos x}}=\frac{-\sin x}{2 \sqrt{\cos x} \sqrt{1-\cos x}}
$$

Inverse Cosine Function

Inverse Cosine Function We can define the function $\cos ^{-1} x=\arccos (x)$ similarly. The details are given at the end of your lecture notes.

$$
\text { Domain }\left(\cos ^{-1}\right)=[-1,1] \quad \text { and Range }\left(\cos ^{-1}\right)=[0, \pi] .
$$

$$
\cos ^{-1} x=y \quad \text { if and only if } \quad \cos (y)=x \text { and } 0 \leq y \leq \pi
$$

$$
\cos \left(\cos ^{-1}(x)\right)=x \text { for } x \in[-1,1] \quad \cos ^{-1}(\cos (x))=x \text { for } x \in[0, \pi]
$$

It is shown at the end of the lecture notes that

$$
\frac{d}{d x} \cos ^{-1} x=-\frac{d}{d x} \sin ^{-1} x=\frac{-1}{\sqrt{1-x^{2}}}
$$

and one can use this to prove that

$$
\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}
$$

Restricted Tangent Function

The tangent function is not a one to one function.
The restricted tangent function is given by

$$
h(x)=\left\{\begin{array}{cc}
\tan x & -\frac{\pi}{2}<x<\frac{\pi}{2} \\
\text { undefined } & \text { otherwise }
\end{array}\right.
$$

We see from the graph of the restricted tangent function (or from its derivative) that the function is one-to-one and hence has an inverse, which we denote by

$$
h^{-1}(x)=\tan ^{-1} x \text { or } \arctan x
$$

Graphs of Restricted Tangent and $\tan ^{-1} x$.

Properties of $\tan ^{-1} x$.

$\operatorname{Domain}\left(\tan ^{-1}\right)=(-\infty, \infty)$ and Range $\left(\tan ^{-1}\right)=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
Since $h^{-1}(x)=y$ if and only if $h(y)=x$, we have:
$\tan ^{-1} x=y$ if and only if $\tan (y)=x$ and $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.
Since $h\left(h^{-1}(x)\right)=x$ and $h^{-1}(h(x))=x$, we have:
$\tan \left(\tan ^{-1}(x)\right)=x$ for $x \in(-\infty, \infty) \quad \tan ^{-1}(\tan (x))=x$ for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
From the graph, we have: $\quad \tan ^{-1}(-x)=-\tan ^{-1}(x)$.
Also, since $\quad \lim _{x \rightarrow\left(\frac{\pi}{2}-\right)} \tan x=\infty$ and $\lim _{x \rightarrow\left(-\frac{\pi}{2}+\right)} \tan x=-\infty$,
we have $\lim _{x \rightarrow \infty} \tan ^{-1} x=\frac{\pi}{2}$ and $\quad \lim _{x \rightarrow-\infty} \tan ^{-1} x=-\frac{\pi}{2}$
$\mathrm{y}=\underset{\pi}{\arctan }(\mathrm{x})$

Evaluating $\tan ^{-1} x$

Example Find $\tan ^{-1}(1)$ and $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$.

- $\tan ^{-1}(1)$ is the unique angle, θ, between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta=\frac{\sin \theta}{\cos \theta}=1$. By inspecting the unit circle, we see that $\theta=\frac{\pi}{4}$.
- $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ is the unique angle, θ, between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{1}{\sqrt{3}}$. By inspecting the unit circle, we see that $\theta=\frac{\pi}{6}$.
Example Find $\cos \left(\tan ^{-1}(\sqrt{3})\right)$.
- $\cos \left(\tan ^{-1}(\sqrt{3})\right)=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$.

Derivative of $\tan ^{-1} x$.

Using implicit differentiation, we get

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{x^{2}+1}, \quad-\infty<x<\infty
$$

(Please read through the proof in your notes.) We can use the chain rule in conjunction with the above derivative.
Example Find the domain and derivative of $\tan ^{-1}(\ln x)$

- Domain $=$ Domain of $\ln x=(0, \infty)$

$$
\frac{d}{d x} \tan ^{-1}(\ln x)=\frac{\frac{1}{x}}{1+(\ln x)^{2}}=\frac{1}{x\left(1+(\ln x)^{2}\right)}
$$

Integration Formulas

Reversing the derivative formulas above, we get

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C, \quad \int \frac{1}{x^{2}+1} d x=\tan ^{-1} x+C
$$

Example

$$
\int_{0}^{1 / 2} \frac{1}{1+4 x^{2}} d x
$$

- We use substitution. Let $u=2 x$, then $d u=2 d x, \quad u(0)=0$, $u(1 / 2)=1$.

$$
\int_{0}^{1 / 2} \frac{1}{1+4 x^{2}} d x=\frac{1}{2} \int_{0}^{1} \frac{1}{1+u^{2}} d u=\left.\frac{1}{2} \tan ^{-1} u\right|_{0} ^{1}=\frac{1}{2}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right]
$$

$$
\frac{1}{2}\left[\frac{\pi}{4}-0\right]=\frac{\pi}{8}
$$

Integration

Example

$$
\int \frac{1}{\sqrt{9-x^{2}}} d x
$$

$$
\int \frac{1}{\sqrt{9-x^{2}}} d x=\int \frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}} d x=\frac{1}{3} \int \frac{1}{\sqrt{1-\frac{x^{2}}{9}}} d x
$$

- Let $u=\frac{x}{3}$, then $d x=3 d u$

$$
\int \frac{1}{\sqrt{9-x^{2}}} d x=\frac{1}{3} \int \frac{3}{\sqrt{1-u^{2}}} d u=\sin ^{-1} u+C=\sin ^{-1} \frac{x}{3}+C
$$

